Session: 12-03-02: Data-Enabled Predictive Modeling, Scientific Machine Learning, and Uncertainty Quantification in Computational Mechanics
Paper Number: 119686
119686 - Discovery of Multi-Functional Polyimides Through High-Throughput Screening Using Explainable Machine Learning
Polyimides have been widely used in modern industries because of their excellent mechanical and thermal properties, e.g., high-temperature fuel cells, displays, and aerospace composites. However, it usually takes decades of experimental efforts to develop a successful product. Aiming to expedite the discovery of high-performance polyimides, we utilize computational methods of machine learning (ML) and molecular dynamics (MD) simulations. Our study provides compelling evidence for the effectiveness of a data-driven approach in discovering novel polyimides. Through a carefully designed workflow that incorporates ML techniques, we were able to identify several promising candidates for further experimental synthesis. Our results demonstrate the potential of this method in accelerating the discovery of new materials with desirable properties, and we believe our approach could be applied more broadly to other material discovery problems. We first build a comprehensive library of more than 8 million hypothetical polyimides based on the polycondensation of existing dianhydride and diamine/diisocyanate molecules. Then we establish multiple ML models for the thermal and mechanical properties of polyimides based on their experimentally reported values, including glass transition temperature, Young’s modulus, and tensile yield strength. The obtained ML models demonstrate excellent predictive performance in identifying the key chemical substructures influencing the thermal and mechanical properties of polyimides. The use of explainable machine learning describes the effect of chemical substructures on individual properties, from which human experts can understand the cause of the ML model decision. Applying the well-trained ML models, we obtain property predictions of the 8 million hypothetical polyimides. Then, we screen the whole hypothetical dataset and identify three (3) best-performing novel polyimides that have better-combined properties than existing ones through Pareto frontier analysis. For an easy query of the discovered high-performing polyimides, we also create an online platform https://polyimide-explorer.herokuapp.com/ that embeds the developed ML model with interactive visualization. Furthermore, we validate the ML predictions through all-atom MD simulations and examine their synthesizability. The MD simulations are in good agreement with the ML predictions and the three novel polyimides are predicted to be easy to synthesize via Schuffenhauer’s synthetic accessibility score. Following the proposed ML guidance, we successfully synthesized a novel polyimide and the experimentally obtained high glass transition/thermal decomposition temperature demonstrated its excellent thermal stability. Our study demonstrates an efficient way to expedite the discovery of novel polymers using ML prediction and MD validation. The high-throughput screening of a large computational dataset can serve as a general approach for new material discovery in other polymeric material exploration problems, such as organic photovoltaics, polymer membranes, and dielectrics.
Presenting Author: Ying Li University of Wisconsin-Madison
Presenting Author Biography: Dr. Li joined the University of Wisconsin-Madison in August 2022 as an Associate Professor of Mechanical Engineering. From 2015 to 2022, he was an Assistant Professor of Mechanical Engineering at the University of Connecticut and was promoted to Associate Professor. He received his Ph.D. in 2015 from Northwestern University, focusing on the multiscale modeling of soft matter and related biomedical applications. His current research interests are: multiscale modeling, computational materials design, mechanics and physics of polymers, and machine learning-accelerated polymer design. Dr. Li’s achievements in research have been widely recognized by fellowships and awards, including NSF CAREER Award (2021), Air Force’s Young Investigator Award (2020), 3M Non-Tenured Faculty Award (2020), ASME Haythornthwaite Young Investigator Award (2019), NSF CISE Research Initiation Initiative Award (2018) and multiple best paper awards from major conferences. He has authored and co-authored more than 100 peer-reviewed journal articles, including Physical Review Letters, ACS Nano, Biomaterials, Nanoscale, Macromolecules, Journal of Mechanics and Physics of Solids, and Journal of Fluid Mechanics, etc. He has been invited as a reviewer for more than 90 international journals, such as Nature Communications and Science Advances. Dr. Li’s lab is currently supported by multi-million-dollar grants and contracts from NSF, AFOSR, AFRL, ONR, DOE/National Nuclear Security Administration, DOE/National Alliance for Water Innovation, and industries.
Authors:
Ying Li University of Wisconsin-MadisonDiscovery of Multi-Functional Polyimides Through High-Throughput Screening Using Explainable Machine Learning
Paper Type
Technical Presentation