Session: Rising Stars of Mechanical Engineering Celebration & Showcase
Paper Number: 148618
148618 - High-Aspect-Ratio Multi-Material Three-Dimensional Microstructures via Microfluidic Direct Laser Writing
This project focuses on understanding and advancing a novel additive manufacturing strategy to enable entirely new paradigms of multi-material, and in turn multi-functional, three-dimensional (3D) structures at sub-micron scales for emerging scientific applications. The ability to manufacture geometrically complex yet functionally advantageous microsystems comprised of multiple fully-integrated materials?corresponding to desired optical, biological, chemical, electrical, and/or mechanical properties?offers the potential to revolutionize a multitude of fields, including biomedicine, optics and photonics, metamaterials, and microrobotics. A recently created additive manufacturing technique, "microfluidic direct laser writing," is uniquely suited to realize such capabilities. By using tightly-focused laser pulses to solidify distinct, sequentially loaded photoreactive liquids in designated locations, this approach allows for multi-material 3D microstructures to be built with unparalleled geometric versatility at 100-nanometer length scales. Current methods of additive manufacturing at this scale appear to be limited to building 3D constructs with small height-to-width aspect ratios. This research project seeks to understand, explain, and ultimately control the fundamental process mechanisms that have heretofore hindered the use of direct laser writing for printing multi-material 3D microstructures with large aspect ratios. In concert, this project focuses on establishing education and outreach activities that are either directly integrated with or inspired by the research plans, including: (i) non-competitive additive manufacturing activities for high school women, (ii) year-long integrated research projects for high school students, (iii) a four-year-long Honors Thesis project for undergraduate students, and (iv) new multi-material projects for the additive manufacturing curriculum. By leveraging the unique accessibility of additive manufacturing (or colloquially, "3D printing"), these activities are expected to increase science and engineering exposure and inspire a lasting interest and confidence in advanced manufacturing research for high school, undergraduate, and graduate students, with an emphasis on inclusion for women and students of color.
The overarching goal of the research is to uncover and access regions of the microfluidic direct laser writing processing design space to achieve accurate and repeatable manufacturing of entirely new classes of multi-material 3D nanostructured components that are not restricted to low aspect ratios. At present, the roles of underlying microfluidic direct laser writing process factors?namely, those stemming from two-photon polymerization phenomena and microscale mechano-fluidic interactions?remain poorly understood. To bridge these knowledge gaps, this research project will combine theoretical and experimental studies to systematically investigate and reveal the fundamental relationships connecting: (i) the point-by-point, layer-by-layer writing path of the scanning laser, (ii) microfluidic infusion conditions, (iii) mechanical and shrinkage-based microstructure deformation dynamics, and (iv) material misalignment error propagation during intermediate microfluidic direct laser writing stages. It is envisioned that the results of the research activities will catalyze new technologies for optical, biomedical, and microelectronics applications in academic, commercial, and governmental sectors. This project will allow the PI to significantly advance the state of knowledge in multi-material additive micro/nanomanufacturing, expand the use of direct laser writing, and firmly establish the PI's long-term career in advanced manufacturing.
Presenting Author: Ryan Sochol University of Maryland, College Park
Presenting Author Biography: Dr. Ryan D. Sochol is an Associate Professor of Mechanical Engineering within the A. James Clark School of Engineering at the University of Maryland, College Park. Prof. Sochol is a Fischell Institute Fellow within the Robert E. Fischell Institute for Biomedical Devices and an Executive Committee Member of the Maryland Robotics Center, and also holds affiliate appointments in the Fischell Department of Bioengineering and the Institute for Systems Research. Prof. Sochol directs the Bioinspired Advanced Manufacturing (BAM) Laboratory, which pioneers micro/nanoscale additive manufacturing or “3D Printing” approaches to solve mechanically and physically complex challenges, with an emphasis on biomedical applications. Prof. Sochol has developed and teaches two courses: (i) a dual undergraduate-graduate-level “Additive Manufacturing” course, and (ii) an undergraduate-level course, entitled “The Legend of Zelda: A Link to Machine Design”. Prof. Sochol received his B.S. in Mechanical Engineering from Northwestern University in 2006, and both his M.S. and Ph.D. degrees in Mechanical Engineering from the University of California, Berkeley, in 2009 and 2011, respectively, with Doctoral Minors in Bioengineering and Public Health. Prof. Sochol’s postdoctoral training spanned the Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Brigham and Women’s Hospital, the University of California, Berkeley, and the University of Tokyo. Prof. Sochol received the NSF “CAREER” Award in 2020 and the “Early Career Award” from the Institute of Physics Journal of Micromechanics and Microengineering in 2021, and was honored as an inaugural “Rising Star” by the journal, Advanced Materials Technologies, in 2023.
Authors:
Ryan Sochol University of Maryland, College ParkHigh-Aspect-Ratio Multi-Material Three-Dimensional Microstructures via Microfluidic Direct Laser Writing
Paper Type
Poster Presentation